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Abstract: A model predictive control scheme was proposed for discrete-time uncertain linear systems subject to input con-
straints. The cost functional to be minimised is a finite horizon quadratic cost, which describes the performance of the
corresponding nominal system. The control action is specified in terms of both feedback and open-loop components. The
open-loop part of the control action steers the centre of associated ellipsoids into a set around the origin, while the feedback
component forces the actual system states to remain in those ellipsoids. Both feedback and open-loop control are determined
online by repeatedly solving a convex optimisation problem. The predictive control scheme guarantees recursive feasibility
and robust stability if the convex optimisation problem is feasible at the initial time instant. A numerical example illustrates
the effectiveness of the proposed approach.
Nomenclature

The following notations are used throughout the paper. Let
R and Z denote the field of real number, the set of integer
numbers, R

n denotes the n-dimensional Euclidean space.
The notations Z[c1,c2] and Z[c1,c2) are to denote the sets {k ∈

Z | c1 ≤ k ≤ c2} and {k ∈ Z | c1 ≤ k < c2}. For a matrix
M ∈ R

n×n, M T denotes the transpose of M and σ̄ (M )
denotes the largest singular value of matrix M . Im denotes
the m × m identity matrix, and ∗ denotes the corresponding
symmetric block in symmetric matrices.

1 Introduction

Model predictive control (MPC) has received remark-
able attention in both practical applications and theoretical
research over the last 30 years since it yields optimal per-
formance and it is capable of explicitly dealing with state
and input constraints. The basic idea of standard MPC [1–
4] is as follows: online, a finite horizon open-loop optimal
control problem based on the current measurement of the
system states is solved. Then, the first part of the obtained
open-loop optimal input trajectory is applied to the system.
At the succeeding time instant, the optimal control problem
is solved again using new state measurements, and the actual
control input is updated.

However, for a nominally stabilising MPC scheme with
the presence of disturbances and/or model uncertainties
might lead to performance deterioration or even loss of
stability [5]. This basically results from two major prob-
lems of standard MPC. First, the solution to the optimal
control problem is open-loop trajectory, and feedback is
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only provided at the sampling instants [6]. Second, recur-
sive feasibility often cannot be guaranteed for all admissible
uncertainty realisations [7].

An intuitive approach to guarantee robust stability and
recursive feasibility is to use a min-max MPC formula-
tion, where the optimal input is determined such that the
performance criteria is minimised for a worst-case uncer-
tainty [8–14]. However, such approaches are computation-
ally expensive in general. Furthermore, the optimal input
is obtained for a possibly unrealistic worst-case scenario,
which often results in poor performance in the case of small
actual uncertainties.

For uncertain linear systems, the min–max MPC for-
mulation is circumvented in [15] by repeatedly solving a
semi-definite program (SDP) such that an upper bound on
the worst-case performance is minimised. This computation-
ally attractive approach is based on the online calculation of
robustly positively invariant ellipsoids and associated feed-
back matrices. The price to pay is a rather small region of
attraction.

Many research activities focused on enlarging the region
of attraction and/or improving control performance while
keeping the computational burden as low as possible.

Using parameter-dependent Lyapunov functions, The
authors of [16–18] propose MPC schemes that guarantee
asymptotic stability rather than exponential stability, and
provide extra degrees of freedom to reduce the conservative
of the optimisation problem.

A fixed state-feedback law with perturbations is proposed
in [19], where the system trajectory tracks the trajectory
related to an a priori fixed state-feedback control law.

A parameter-dependent feedback law in the framework of
gain-scheduling is proposed in [20], which offers potential
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doi: 10.1049/iet-cta.2011.0467



www.ietdl.org
performance improvements compared with approaches with
static feedback laws.

By allowing the first control action to be chosen freely, the
robust MPC schemes in [21–23] are applicable to systems
subject to asymmetric constraints.

Linear parameter-varying (LPV) system is a particular
case of linear uncertain systems whose dynamics depend on
time-varying parameters. The MPC scheme of LPV systems
in [24] is based on ellipsoid mapping over a finite horizon.
This approach requires that the rate of the parameter varia-
tion is bounded, and is thus restricted to systems with slowly
varying parameters. Recently, robust MPC schemes for lin-
ear systems with structured feedback uncertainty have been
exploited by Smith [25, 26]. The control law is specified
in terms of both feedback and open-loop components. The
open-loop part steers the trajectory of the nominal system to
the origin at the end of the prediction horizon [25] or at some
time instants within the prediction horizon [26], whereas the
associated feedback law renders some prescribed ellipsoids
invariants.

In this paper, we introduce a finite horizon robust MPC
scheme of linear systems subject to structured feedback
uncertainty and input constraints. The considered finite hori-
zon cost functional, including a terminal function penalising
the state at the end of the prediction horizon, solely depends
on the trajectories of the nominal system, which is different
from the results proposed by the authors of [15, 20, 21],
where a worst-case cost functional is minimised. Similar
to [25, 26], the idea is to divide the control law in both
feedback and open-loop components. The open-loop compo-
nent steers the nominal trajectories into a nominal terminal
set around the origin. The feedback component ensures that
the actual state trajectories remain in some associated pre-
dicted ellipsoids for any admissible uncertainty realisation.
The ellipsoids are calculated such that any perturbed state at
the end of the prediction horizon lies in the actual terminal
set, which entirely contains the nominal terminal set. The
terminal penalty function represents an upper bound on the
infinite horizon cost obtained by fictitiously applying a lin-
ear terminal feedback law, which renders the actual terminal
region to be robust positive invariant. The resulting online
optimisation problem is formulated as a convex optimisation
problem, and the proposed scheme guarantees robust stabil-
ity and recursive feasibility if the optimisation problem is
initially feasible. The terminal set, terminal penalty func-
tion, and terminal feedback law are determined by solving
linear matrix inequalities (LMIs) offline.

The paper is structured as follows: Section 2 introduces
the system considered, and presents some results on ellipsoid
mapping, constraints satisfaction and the choice of design
parameters. In Section 3, the novel robust MPC scheme is
proposed, together with a discussion of its recursive feasi-
bility and asymptotic stability properties. Simulation results
are reported in Section 4.

To derive the results proposed in this section, some pre-
liminary results are used. First, we consider the well-known
S-procedure.

Lemma 1 (S-procedure for quadratic functions) [27]: Let
F0, F1, . . . , Fp be quadratic functions of the variable ξ ∈ R

n

Fi(ξ) := ξTTiξ + 2βT
i ξ + δi, i ∈ Z[0,p]

where βi ∈ R
n, T T

i = Ti ∈ R
n×n and δi is a scalar. We

consider the following condition on F0, . . . , Fp

F0(ξ) ≥ 0, for all ξ such that Fi(ξ) ≥ 0, i ∈ Z[1,p] (1)
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If there exist τi > 0, for all i ∈ Z[1,p], such that for all ξ

F0(ξ) −
p∑

i=1

τiFi(ξ) ≥ 0

then (1) holds. For p = 1, the converse holds, provided that
there is some ξ0 such that F1(ξ0) ≥ 0.

We further require the following result.

Lemma 2 [28, 29]: Let G ∈ R
n×n, H ∈ R

n, x ∈ R
n and c ∈

R. The inequality

xTGx + 2H Tx + c ≤ 0 (2)

is satisfied for all x ∈ R
n, if and only if[
G H

H T c

]
≤ 0 (3)

2 Problem setup

Consider the discrete-time linear system with structured
feedback uncertainty; see Fig. 1

xk+1 = Axk + Buk + Bppk (4a)

qk = Cqxk + Dquuk (4b)

pk = �kqk (4c)

where xk ∈ R
nx is the state, uk ∈ U ⊆ R

nu is the control
input, and pk ∈ R

np and qk ∈ R
np describe the structured

feedback uncertainty of the considered system. The input
constraint set is defined as

U := {u ∈ R
nu | gT

j u ≤ hj, j ∈ Z[1,ru]} (5)

where ru ∈ Z[0,∞) is the number of input constraints, gj ∈
R

nu×1 and hj ∈ R. Denote

� :=
{

� ∈ R
np×np | � := diag [�1, �2, . . . �m],

σ̄ (�l) ≤ 1, �l ∈ R
nl×nl , l ∈ Z[1,m],

m∑
l=1

nl = np

}
(6)

where �l is a repeated scalar or a full block. �l models
a number of factors, such as non-linearities, dynamics or

Fig. 1 Graphical representation of structured feedback
uncertainty
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parameters, that are unknown, unmodelled or neglected. The
operator �k ∈ � is a block diagonal matrix.

Denote the projection onto the lth component associated
with �l as 	l , that is, 	l satisfies �l = 	l�, � ∈ �. Then,
the norm bound on each �l implies that

(	lpk)
T	lpk ≤ (	lqk)

T	lqk , l ∈ Z[1,m] (7)

Remark 1: The uncertainty formulation can also be viewed
as replacing the state-space matrices (A, B) by (A, B) ∈ (A,
B), where (A, B) := {A + Bp�Cq, B + Bp�Dqu | � ∈ �}.

The nominal dynamics of system (4) are defined by

zk+1 := Azk + Bvk (8)

where zk ∈ R
nx is the nominal state and vk ∈ R

nu is the
nominal control input.

Assumption 1: The system state xk can be measured in real-
time and the pair (A, B) is stabilisable.

The goal of this paper is to design an MPC control law,
which steers the system trajectory from the state xk at time
k to the equilibrium such that constraints (5) are satisfied.
For this, the control signal is specified as

uk = Kk(xk − zk) + vk (9)

where Kk ∈ R
nu×nx , for all k ∈ Z[1,∞).

Define the error ek := xk − zk as the deviation of the
actual state from the nominal state. Under control (9), we
obtain the error dynamics

ek+1 = (A + BKk)ek + Bppk (10a)

qk = (Cq + DquKk)ek + Cqzk + Dquvk (10b)

pk = �kqk (10c)

Ellipsoids centred around the nominal trajectory zk are
defined as

P(zk) :=
{

x ∈ R
nx | (x − zk)

TP(x − zk) ≤ α

4

}
(11)

where positive-definite matrix P ∈ Rnx×nx , and scalar α > 0
are given.

By a modification of a result in [26], we first introduce a
preliminary lemma, called the ellipsoid mapping, which can
cast the actual system trajectory inside the ellipsoids centred
along the nominal trajectory.

Lemma 3 (Ellipsoid mapping): Consider system (4) and the
block diagonal perturbation constraints (7). Let zk ∈ R

nx ,
xk ∈ P(zk), P ∈ R

nx×nx is a positive-definite matrix and α >
0. Suppose that there exist vk ∈ R

nu , Kk ∈ R
nu×nx , ξk ∈ [0, 1),

�k = diag(λ1k I , . . . , λmkI ) with λik > 0 for all i ∈ Z[1,m],
such that

Sk :=

⎡
⎢⎢⎢⎢⎢⎣

−ξkP ∗ ∗ ∗ ∗
0 −�k ∗ ∗ ∗
0 0

α

4
(ξk − 1) ∗ ∗

A + BKk Bp�k 0 −P−1 ∗
Cq + DquKk 0 Cqzk + Dquvk 0 −�k

⎤
⎥⎥⎥⎥⎥⎦ ≤ 0

(12)

Then, the control law uk = Kk(xk − zk) + vk guarantees that
xk+1 ∈ P(zk+1), where zk+1 = Azk + Bvk .
2822
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Proof: Under the control uk = Kk(xk − zk) + vk , the require-
ment that xk+1 ∈ P(zk+1) is equivalent to the quadratic
functional

T0 =
[

xk − zk

pk

]T [
(A + BKk)

T

BT
p

]
P[A + BKk Bp]

×
[

xk − zk

pk

]
− α

4
≤ 0 (13)

The requirement that xk ∈ P(zk) is equivalent to

T1 =
[

xk − zk

pk

]T [
I
0

]
P[I 0]

[
xk − zk

pk

]
− α

4
≤ 0 (14)

Each of the m perturbation constraints (7) is equivalent to

T2l =
[

xk − zk

pk

]T ([
0
I

]
	T

l 	l[0 I ] −
[
(Cq + DquKk)

T

0

]

	T
l 	l[(Cq + DquKk) 0]

)[
xk − zk

pk

]
− 2(Cqzk + Dquvk)

T

	T
l 	l[(Cq + DquKk) 0]

[
xk − zk

pk

]
− (Cqzk + Dquvk)

T	T
l 	l(Cqzk + Dquvk) ≤ 0

(15)

Via the S-Procedure, the requirement of the lemma is met
if there exists ξk and �k such that

T0 − ξkT1 −
m∑

l=1

λ−1
lk T2l ≤ 0 (16)

The quadratic function (16) is a functional of [xk − zk pk ]T,
which is required to hold for all xk and pk . With the
Schur complement and Lemma 2, and some simple matrix
transformations, (16) is reduced to the matrix constraints
Sk ≤ 0. �

Remark 2: Pre- and post-multiplying (12) by [I 0 0
I 0] and [I 0 0 I 0]T, we obtain

[ −ξkP ∗
A + BKk −P−1

]
≤ 0

Using the Schur complement, this is equivalent to

(A + BKk)
TP(A + BKk) − ξkP ≤ 0

Since ξk ∈ [0, 1), this implies that the nominal system (8) is
asymptotically stable under the control law vk := Kkzk .

Note that (12) represents an LMI since Sk is linear in its
unknowns. Lemma 3 proposes a way to calculate a feedback
law Kk and an open-loop input vk such that xk+1 ∈ P(zk+1)
if xk ∈ P(zk). The associated control input satisfies con-
straints (5) if the conditions stated in the following lemma
are satisfied.

Lemma 4 (Input constraints) [26]: The control signal uk

satisfies the input constraints (5) for all xk ∈ P(zk), if and
only if there exist vk ∈ R

nu , Kk ∈ R
nu×nx , and ηk , j > 0, for
IET Control Theory Appl., 2012, Vol. 6, Iss. 18, pp. 2820–2828
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all j ∈ Z[1,ru] such that

Uk , j :=
[−ηk , jP ∗

gT
j Kk

α

4
ηk , j + 2gT

j vk − 2hj

]
≤ 0, ∀j ∈ Z[1,ru]

(17)

Remark 3: Note that Lemma 4 does not introduce any
conservativeness because of its condition being ‘if and
only if ’.

The following lemma states conditions for the calculation
of P and α, that were assumed to be given in the results
above.

Lemma 5 (Parameters P and α) [15]: Consider system
(4) and the block diagonal perturbation constraints (7). Let
Q ∈ R

nx×nx and R ∈ R
nu×nu be positive-definite matrices. If

there exist �a = diag(λ1aI , . . . , λmaI ) with λia > 0, for all
i ∈ Z[1,m], positive-definite matrix X ∈ R

nx×nx , non-square
matrix Y ∈ R

nu×nx , and α > 0, such that⎡
⎢⎢⎢⎢⎢⎣

−X ∗ ∗ ∗ ∗
R

1
2 Y −α ∗ ∗ ∗

Q
1
2 X 0 −α ∗ ∗

CqX + DquY 0 0 −�a ∗
AX + BY 0 0 0 −X + Bp�aBT

p

⎤
⎥⎥⎥⎥⎥⎦ ≤ 0

(18a)[
hjhT

j gT
j Y

∗ X

]
≥ 0 (18b)

with j ∈ Z[1,ru], then, the ellipsoid

Xf := {x ∈ R
nx | xTPx ≤ α} (19)

with P := αX −1, and the linear state feedback control law
uk = Fxk with F := YX −1 have the following properties:

(1) Let M (xk) := xT
k Pxk . Then, M (xk+1) − M (xk) ≤ −xT

k
Qxk − uT

k Ruk for all k ∈ Z[0,∞) and for all xk ∈ Xf ;
(2) Xf is robustly invariant for system (4) controlled by the
feedback control law uk = Fxk ;
(3) uk = Fxk ∈ U for all xk ∈ Xf .

Define an ellipsoid �z as

�z :=
{

z ∈ R
nx | zTPz ≤ α

4

}
which will serve as the terminal set of the online optimisa-
tion problem in the following section.

If we choose vk = Fzk , and if the additional constraint
stated in the next lemma is satisfied, the solution of (18a)
also satisfies (12), and therefore, Lemma 3 is satisfied for all
zk ∈ �z. This result plays an important role in the construc-
tion of a feasible solution to the proposed MPC scheme later.

Lemma 6: Let W := (Cq + DquF)Tα�−1
a (Cq + DquF), and

let X , Y , α and �a be a feasible solution to (18a). Suppose
there exists ξ ∈ [0, 1) such that[

(1 − ξ)P − W W
W FTRF + Q − (1 − ξ)P

]
≥ 0 (20)

where P = αX −1 and F = YX −1. Then, X , Y , α, ξ and �a

also satisfy (12) for all zk ∈ �z with �k := α−1�a, Kk := F ,
ξk := ξ and vk := Fzk .
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Proof: By the Schur complement, (18a) is equivalent to

⎡
⎣FTRF + Q − P + W ∗ ∗

0 −α�−1
a ∗

A + BF BP −P−1

⎤
⎦ ≤ 0 (21)

and (12) is equivalent to

⎡
⎢⎢⎢⎣

−ξP + W ∗ ∗ ∗
0 −α�−1

a ∗ ∗
zT

k W 0
α

4
(ξ − 1) + zT

k Wzk ∗
A + BF BP 0 −P−1

⎤
⎥⎥⎥⎦ ≤ 0

(22)

with vk = Fzk .
Obviously, WT = W > 0. Define β := α

4 (ξ − 1) +
zT

k Wzk , and assume that β < 0, then (22) can be rewritten as

⎡
⎣−ξP + W − β−1WzkzT

k W ∗ ∗
0 −α�−1

a ∗
A + BF BP −P−1

⎤
⎦ ≤ 0 (23)

Suppose that

FTRF + Q − P + W ≥ −ξP + W − β−1WzkzT
k W ,

∀zk ∈ �z (24)

Then, satisfaction of (21) implies that (23) holds, that is, the
solution of (14a) also satisfies (12). Since β < 0, using the
Schur complement, (24) is equivalent to

[
FTRF + Q − (1 − ξ)P ∗

zT
k W α

4 (1 − ξ) − zT
k Wzk

]
≥ 0 (25)

which means that

zT
k (W + W(FTRF + Q − (1 − ξ)P)−1W)zk ≤ α

4
(1 − ξ),

∀zk ∈ �k (26)

Note that β < 0 is satisfied automatically if inequality (25)
has a feasible solution.

Since zk ∈ �k , that is, zT
k Pzk ≤ α

4 , it follows that if we
impose

W + W(FTRF + Q + (ξ − 1)P)−1W ≤ P(1 − ξ) (27)

which is the Schur complement to (20), then (26), and thus,
(24), holds. Therefore (21) implies (23), which completes
the proof. �

Unfortunately, (20) is a non-LMI, which is not easy to
solve. Thus, normally we solve the LMIs (18a and b), and
then check whether or not the parameters �a, P, F satisfy
(20).

Based on the foregoing lemmas, in the next section we
propose a novel finite horizon MPC scheme and discuss its
feasibility and stability properties if (20) is satisfied.
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3 Finite horizon MPC with ellipsoid mapping

In this section, we present the main result of this paper,
namely a robust MPC scheme for the uncertain linear system
(4). The control sequence obtained consists of two compo-
nents: a nominal open-loop control sequence and a feedback
control law. The idea is that the nominal control sequence
steers the centre of predicted ellipsoids into a prescribed
nominal terminal set, where the centres of the ellipsoids are
generated by the nominal model (8). The feedback control
law ensures that the state of the uncertain linear system lies
in the ellipsoids for all admissible uncertainties. The open-
loop component is similar to that of [24, 25, 30], but in
our scheme the feedback control law is defined by an online
determined time-varying matrix rather than a static one. As
it will be shown, both the nominal control action and the
feedback control law are obtained online by repeatedly solv-
ing a convex optimisation problem. Suppose that P and α
are obtained offline by Lemma 5. To distinguish the actual
state and predicted trajectories, in what follows the index
k + i/k denotes future values at time k + i predicted at time
k , i ∈ Z[0,N−1].

Denote the sequences zk := {zk/k , zk+1/k , . . . , zk+N−1/k} and
vk := {vk/k , vk+1/k , . . . , vk+N−1/k}, and define the nominal cost
functional as

J (zk , vk) =
N−1∑
i=0

{zT
k+i/kQzk+i/k + vT

k+i/kRvk+i/k}

+ zT
k+N/kPzk+N/k (28)

where N ∈ Z[0,∞) is the prediction horizon, Q ∈ R
nx×nx

and R ∈ R
nu×nu are positive-definite weighting matrices,

zT
k+i/kQzk+i/k + vT

k+i/kRvk+i/k is the stage cost and zT
k+N/k

Pzk+N/k is the terminal penalty function.
The proposed MPC scheme is based on the repeated solu-

tion of the following optimisation problem for the current
state xk ∈ R

nx :

Problem 1:

minimise
zk ,vk+i/k ,Kk+i/k ,ξk+i/k ,ηk+i, j/k �k+i/k

J (zk , vk) (29a)

subject to

zk+i+1/k = Azk+i/k + Bvk+i/k , zk/k = zk (29b)

xk ∈ P(zk) (29c)

Sk+i/k ≤ 0, i ∈ Z[0,N−1] (29d)

Uk+i/k , j ≤ 0, i ∈ Z[0,N−1], j ∈ Z[1,ru] (29e)

zk+N/k ∈ �z (29f )

where �k+i/k = diag(λ1,k+i/k I , . . . , λm,k+i/k I ), with λl,k+i/k >
0, l ∈ Z[1,m], ηk+i, j/k > 0 and ξk+i/k ∈ [0, 1), i ∈ Z[0,N−1]. The
notation Sk+i/k and Uk+i/k ,j denote the term Sk in Lemma 3
and Uk ,j in Lemma 4, respectively, at the future time k + i
predicted at time k .

Remark 4: Since P and α are determined a priori, Prob-
lem 1 is a convex optimisation problem [31]. Furthermore,
the optimisation problem considered can be transformed into
an SDP since (29c and f) can be rewritten as LMIs by the
Schur complement. Thus, for simplicity, in what follows we
refer to Problem 1 as an SDP.
2824
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Remark 5: In this paper, only input constraint (5) is consid-
ered. In order to take state constraint into account, similar
to [32], a restricted constraint on the ellipse centres has to
be estimated offline and involved in Problem 1.

We refer to the set �z as the ‘nominal’ terminal region
of Problem 1. The following lemma states that any feasi-
ble solution to Problem 1 steers the actual system state into
the set Xf in N steps. Since Xf has been obtained using
Lemma 5, we know that it is robustly invariant for the
original system (4). Obviously, Xf represents the ‘actual’
terminal region of the proposed scheme for system (4) with
the static control law uk = Fxk , which motivates us to use
this control law as a candidate terminal control law, while
xk ∈ Xf .

Lemma 7: Let zk and vk denote a feasible solution
to Problem 1. Then, the admissible state trajectory
xk := {xk/k , xk+1/k , . . . , xk+N/k} satisfies xT

k+N/kPxk+N/k ≤ α,
that is, xT

k+N/k ∈ Xf .

Proof: Since xk ∈ P(zk), it follows by repeatedly exploiting
Lemma 3 that xk+N/k ∈ P(zk+N/k), that is

(xk+N/k − zk+N/k)
TP(xk+N/k − zk+N/k) ≤ α

4

Note that for any β1, β2 ∈ R
nx and positive-definite matrix

M ∈ R
nx×nx , βT

1 Mβ1 + βT
2 Mβ2 ≥ 1

2 (β1 + β2)
TM (β1 + β2),

which can be confirmed by a simple inner-product transfor-
mation. In virtue of this, we conclude that zT

k+N/kPzk+N/k +
(xk+N/k − zk+N/k)

TP(xk+N/k − zk+N/k) ≥ 1
2 xT

k+N/kPxk+N/k .
Since zT

k+N/kPzk+N/k ≤ α

4 and (xk+N/k − zk+N/k)
T

P(xk+N/k − zk+N/k) ≤ α

4 , then xT
k+N/kPxk+N/k ≤ α. �

Remark 6: Let b > 0 and c > 0 such that 1
b

+ 1
c

= 1
2 . Define

the sets P0(zk) := {x | (xk − zk)
TP(xk − zk) ≤ α

b
} and �0 :=

{zk | zT
k Pzk ≤ α

c
}. If Problem 1 has a feasible solution, then,

by similar arguments as in the proof of Lemma 7 we can
guarantee that xT

k+N/kPxk+N/k ≤ α also holds. In other words,
P0(zk) and �0 can serve as the mapping ellipsoid and the
‘nominal’ terminal set, respectively, of Problem 1.

We are now ready to present the robust MPC scheme that
is based on the ellipsoid mapping, and establish its feasibility
and robust stability properties.

First, we assume that the following assumption is satis-
fied.

Assumption 2: Let the pair (P, α) be a feasible solution to
(18), and suppose that this pair also satisfies (20).

The robust MPC control law is derived from the solu-
tion of the convex optimisation Problem 1, which is solved
repeatedly at each sampling instant k based on the state
measurement xk .

Algorithm 1: Step 1. At time instant k , measure the state xk

and solve Problem 1.
Step 2. Apply uk = vk + Kk/k(xk − zk) to the actual system
(4). Set k = k + 1 and go to Step 1.

The feasibility and stability properties of the proposed
scheme according to Algorithm 1 depend on the feasibility
of Problem 1 at the initial time instant.
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Let z∗
k and v∗

k+i/k , K∗
k+i/k , ξ ∗

k+i/k , �∗
k+i/k , η∗

k+i, j/k , i ∈ Z[0,N−1]
be the optimal solution to Problem 1. For brevity of notation,
denote �∗

k+i/k := [v∗
k+i/k , K∗

k+i/k , ξ ∗
k+i/k , �∗

k+i/k , η∗
k+i, j/k ] for all

i ∈ Z[0,N−1].

Theorem 1 (Feasibility): Problem 1 is feasible at all time
instants if it is feasible at k = 0.

Proof: Assume that Problem 1 is feasible at time instant k ,
and its solution is

[z∗
k , �∗

k/k , �∗
k+1/k , . . . , �∗

k+N−1/k ] (30)

Denote the actual state sequence and the nominal state
sequence, related to (30), as [xk+1/k , xk+2/k , . . . , xk+N/k ] and
[z∗

k+1/k , z∗
k+2/k , . . . , z∗

k+N/k ]. According to Algorithm 1, the
input applied to the system (4) at time k is uk = K∗

k/k(xk −
z∗

k ) + v∗
k/k . By Lemma 3, the input guarantees that the actual

system state xk+1 lies in the ellipsoid P(z∗
k+1/k) for any

admissible uncertainty.
Denote �k+N/k+1 := [Fz∗

k+N/k , F , ξ , �a, η]. With state xk+1

at time instant k + 1, consider the following feasible solution
candidate

[z∗
k+1/k , �∗

k+1/k , . . . , �∗
k+N−1/k , �k+N/k+1] (31)

where F and � satisfy (18), and ξ and η will be introduced
later.

Based on Lemma 7 and z∗
k+N/k ∈ �z, we know that

xk+N/k ∈ Xf and Fxk+N/k satisfies the input constraints (5),
that is, gT

j Fxk+N/k ≤ hj. Obviously, Fxk+N/k = Fz∗
k+N/k +

F(xk+N/k − z∗
k+N/k). From the proof of Lemma 4, it follows

that if there exists η > 0, such that

2gT
j F(xk+N/k − z∗

k+N/k) + 2gT
j vk+N/k − 2hj

− η
(
(xk+N/k − z∗

k+N/k)
TP(xk+N/k − z∗

k+N/k) − α

4

)
≤ 0

then, inequality (17) is satisfied. In terms of vk+N/k+1 :=
Fz∗

k+N/k while z∗
k+N/k ∈ �z, this is equivalent to

2gT
j Fxk+N/k − 2hj

− η
(
(xk+N/k − z∗

k+N/k)
TP(xk+N/k − z∗

k+N/k) − α

4

)
≤ 0

(32)

Since gT
j Fxk+N/k ≤ hj, and (xk+N/k − z∗

k+N/k)
TP(xk+N/k −

z∗
k+N/k) ≤ α

4 , which results from Lemma 5, obviously, there
exists a scalar η > 0 satisfying condition (32). Therefore at
time instant k + 1, constraint (29e) is satisfied with vk+N/k+1,
ηk+N/k+1 := η and Kk+N/k+1 := F .

Based on Assumption 2 and Lemma 6, there exists ξ such
that constraint (29d) is satisfied with ξk+N/k+1 := ξ , vk+N/k+1,
Kk+N/k+1 and �k+N/k+1 := α−1�a.

F is a feasible control law, which robustly stabilises sys-
tem (4), for all x ∈ Xf . Further, it is an asymptotically
stable control law for the nominal system (8), too. Therefore
zk+N+1/k+1 := A + BFz∗

k+N/k satisfies (29f).
Based on the above discussion, sequence (31) is a feasible

solution to Problem 1 at time instant k + 1. �

Let us define a Lyapunov function candidate as

V (xk) := min
zk ,vk+i/k ,Kk+i/k ,ξk+i/k ,ηk+i, j/k �k+i/k

J (zk , vk) (33)
IET Control Theory Appl., 2012, Vol. 6, Iss. 18, pp. 2820–2828
doi: 10.1049/iet-cta.2011.0467
Here, we emphasise that the optimal value of the cost func-
tional is solely defined by the state xk , which is measured
online.

Theorem 2 (Stability): Suppose that Problem 1 is feasible
at time k = 0. Then, system (4) is asymptotically sta-
bilised under the proposed MPC control law according to
Algorithm 1.

Proof: (1) 0 < V (xk) < +∞ for all xk 
= 0, which follows
directly from the definition of V (·).
(2) V (0) = 0, which is confirmed by choosing all the terms
of sequences zk and vk as 0.
(3) Assume that Problem 1 is feasible at time instant k , and
its solution is given by (30). Then

V (xk) =
N−1∑
i=0

z∗T
k+i/kQz∗

k+i/k + v∗T
k+i/kRv∗

k+i/k + z∗T
k+N/kPz∗

k+N/k

(34)

Denote zk+1 := {zk+1/k+1, zk+2/k+1, . . . , zk+N/k+1} and vk+1 :=
{vk+1/k+1, vk+2/k+1, . . . , vk+N/k+1}. Since (31) is a feasible
solution to Problem 1 at time instant k + 1, we have

J (zk+1, vk+1) =
N−1∑
i=0

zT
k+i+1/k+1Qzk+i+1/k+1 + vT

k+i+1/k+1

× Rvk+i+1/k+1 + zT
k+N+1/k+1Pzk+N+1/k+1

=
N−1∑
i=1

z∗T
k+i/kQz∗

k+i/k + v∗T
k+i/kRv∗

k+i/k

+ z∗T
k+N/k(Q + FTRF)zT

k+N/k

+ zT
k+N+1/k+1Pzk+N+1/k+1 (35)

Owing to the Principle of Optimality, we have V (xk+1) ≤
J (zk+1, vk+1). Thus

V (xk+1) − V (xk) ≤ J (zk+1, vk+1) − V (xk)

= z∗T
k+N/k(Q + FTRF)z∗

k+N/k + zT
k+N+1/k+1

× Pzk+N+1/k+1 − z∗T
k/kQz∗

k/k − v∗T
k/kRv∗

k/k

− zT
k+N/kPzk+N/k (36)

Since zT
k+N+1/k+1Pzk+N+1/k+1 − zT

k+N/kPzk+N/k ≤ −z∗T
k+N/k

(Q + FTRF)z∗
k+N/k , which results from Lemma 5, V (xk+1) −

V (xk) ≤ −z∗T
k/kQz∗

k/k − v∗T
k/kRv∗

k/k .
Clearly, V (xk) is a Lyapunov function and thus, system

(4) is asymptotically stabilised [2] by the control (9). �

Remark 7: Problem 1 is based on the prediction of the
future nominal trajectory associated with the nominal system
(8). Although an exact prediction of the actual trajectory is
not possible in the presence of uncertainties, we know that
the actual system trajectory lies in the prescribed ellipsoids
centred around the nominal trajectory with respect to any
admissible uncertainty.

Assumption 2 is strong and plays an important role in the
construction of feasible solution to Problem 1, as well as
in the proof of stability of the proposed finite horizon MPC
scheme.
2825
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Fig. 2 Comparing of dynamic responses and input trajectory for the initial state x0 = [0.25 0.30]T, solid line: proposed finite horizon
MPC with ellipsoid mapping according to Algorithm 1, dashed line: closed-loop MPC [15]
4 Numerical example

Consider the discrete-time linear system

x1,k+1 = x1,k + (0.15 + 0.125ρk)x2,k

x2,k+1 = 0.15x1,k + (0.5 − 0.125ρk)x2,k + 0.1κuk
2826
© The Institution of Engineering and Technology 2012
subject to the input constraint [0.5 − 0.5]Tuk ≤ [1 1]T,
where κ = 0.8 and xj,k , j = 1, 2, is the jth element of
vector xk . The time-varying parameter ρk is bounded by
ρk ∈ [−1 1], for all k ∈ Z[0,∞). Thus, in the notations of
(4), A = [

1 0.15
0.15 0.5

]
, B = [0 0.1κ]T, Bp = [0.25 − 0.25]T,

Cq = [0 0.5] and Dqu = 0. The uncertainty is described by
IET Control Theory Appl., 2012, Vol. 6, Iss. 18, pp. 2820–2828
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Fig. 3 Exemplary time profiles for dynamic responses and input trajectory with Algorithm 1 from the initial state x0 = [0.55 0.60]T
� = {A + BpρkCq : ρk ∈ [−1 1]}. We choose the matrices
Q = diag(1, 1) and R = 1 in the cost functional (28).

The matrix P = [
1059.7 219.8
219.8 171.3

]
and the scalar α = 50 are

obtained by solving (18). Furthermore, P and α do satisfy
Assumption 2. Thus, we use the finite horizon MPC with
ellipsoid mapping according to Algorithm 1.
IET Control Theory Appl., 2012, Vol. 6, Iss. 18, pp. 2820–2828
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Exemplary, Fig. 2 shows simulation results for the ini-
tial state x0 = [0.25 0.30]T corresponding to ρk = 0.5, for
all k ∈ Z[0,∞). The solid line shows the state and input
trajectories obtained by the proposed method with predic-
tion horizon N = 10. The dashed line shows the trajectories
obtained by [15]. The performance of the proposed finite
2827
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horizon MPC with ellipsoid mapping is worse than the one
of [15] since only nominal performance rather than robust
performance [15] is minimised in Problem 1.

However, for x0 = [0.55 0.60]T and x0 = [0.65 0.75]T,
the closed-loop MPC scheme [15] has no feasible solution at
the initial time instant, whereas the proposed finite horizon
MPC scheme guarantees recursive feasibility and stability
with the prediction horizons N = 38 and N = 48, respec-
tively. This shows that the proposed finite horizon MPC
scheme has a different region of attraction compared with
[15]. Since part of the admissible input is used to keep
the actual state in the ellipsoids around the nominal trajec-
tory, a large prediction horizon is required in the proposed
finite horizon MPC with ellipsoid mapping. Fig. 3 shows the
simulation results for the initial state x0 = [

0.55 0.60
]T

,
whereas ρk ≡ 0.5. The simulation shows that stability as
well as constraint satisfaction are guaranteed even if the
initial state is far from the equilibrium.

5 Conclusions

In this paper, we proposed an MPC scheme for discrete-time
linear systems with structured feedback uncertainty and con-
straints. The control signal is constructed by both feedback
and open-loop terms, which are calculated online by solving
a convex optimisation problem. The open-loop component
steers the centre of associated ellipsoids into a terminal set,
while the feedback component keeps the system state in
those ellipsoids for all admissible uncertainties. If the opti-
misation problem is initially feasible, the proposed MPC
strategy guarantees recursive feasibility and closed-loop sta-
bility. A simulation example illustrated the effectiveness of
the derived theory.
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